FanPost

Mike Norvell's Offense To Date

Hey ya'll take a look at what Coach Mike Norvell has done over the course of his career. These stats are an overview of his play tendencies, OL stats, total yards, passing yards, rushing yards, explosive plays, red-zone and 3rd down and 4th down success, and receptions yards by position group. Let's dive into the numbers.

NOTE **I was going to wait until after the year to post this, but I think that these stats really highlight some of the deficiencies on the roster/personnel that Coach Norvell is dealing with.** Also, the averages denoted do not include the current season.

I am going to continue to track these numbers and will post the final numbers after the bowl game season.

Source of data is from CFB Stats: http://www.cfbstats.com/

Play Tendencies

Year Games Passing Att Pass % Rushing Att Run % Total Plays Plays PG
2020 7 243 46.91% 275 53.09% 518 74.00
2019 14 441 44.46% 551 55.54% 992 70.86
2018 14 413 40.18% 615 59.82% 1028 73.43
2017 13 488 51.86% 453 48.14% 941 72.38
2016 13 477 49.48% 487 50.52% 964 74.15
2015 13 533 49.81% 537 50.19% 1070 82.31
2014 13 467 47.90% 508 52.10% 975 75.00
2013 14 494 44.83% 608 55.17% 1102 78.71
2012 13 413 40.81% 599 59.19% 1012 77.85
Total 107 3726 46.09% 4358 53.91% 8084 75.55
Averages 13 465.8 46.25% 514.8 53.75% 1010.5 75.55

RZ Play Tendencies

Year Games RZ Plays Pass Plays Pass % Run Plays Run %
2020 7 78 28 35.90% 50 64.10%
2019 14 151 49 32.45% 102 67.55%
2018 14 164 55 33.54% 109 66.46%
2017 13 156 79 50.64% 77 49.36%
2016 13 134 48 35.82% 86 64.18%
2015 13 189 94 49.74% 95 50.26%
2014 13 173 72 41.62% 101 58.38%
2013 14 199 68 34.17% 131 65.83%
2012 13 181 61 33.70% 120 66.30%
Total 107 1,425 554 38.88% 871 61.12%

OL Stats

Year G Plays PPG Passing Att Sacks Sacks PG Sack % Rushing Att TFL TFL PG TFL % HAVOC HAVOC PG HAVOC %
2020 7 518 74.0 243 25 3.6 10.29% 275 55 7.9 20.00% 80 11.4 15.44%
2019 14 992 70.9 441 27 1.9 6.12% 551 99 7.1 17.97% 126 9.0 12.70%
2018 14 1028 73.4 413 24 1.7 5.81% 615 82 5.9 13.33% 106 7.6 10.31%
2017 13 941 72.4 488 21 1.6 4.30% 453 73 5.6 16.11% 94 7.2 9.99%
2016 13 964 74.2 477 35 2.7 7.34% 487 94 7.2 19.30% 129 9.9 13.38%
2015 13 1070 82.3 533 39 3.0 7.32% 537 96 7.4 17.88% 135 10.4 12.62%
2014 13 975 75.0 467 40 3.1 8.57% 508 94 7.2 18.50% 134 10.3 13.74%
2013 14 1102 78.7 494 40 2.9 8.10% 608 94 6.7 15.46% 134 9.6 12.16%
2012 13 1012 77.8 413 38 2.9 9.20% 599 90 6.9 15.03% 128 9.8 12.65%
Total 114 8084 70.9 3726 264 2.3 7.09% 4358 722 6.3 16.57% 986 8.6 12.20%

nItBN0RAEaWBHBOBwBBBBwLcAGx3UGmN8HAerIhywSg2sB6sh1BpjfJwHqyadsEostARpYtmQZFwEEELAkwAbHEizDBiVAHQWVboK1JEAdWYJl2CAFqKcg007QEQVoYEUE43AEEEDAtQAbHNcZYH4fBKgjH7JIDK4FqCPXGWB+nwSoJ5+ySSy2BGhg2ZJlXAQQQMCSABscS7AMG5QAdRRUugnWkgB1ZAmWYYMUoJ6CTDtBRxSggRURjMMRQAAB1wJscFxngPl9EKCOfMgiMbgWoI5cZ4D5fRKgnnzKJrHYEqCBZUuWcRFAAAFLAmxwLMEybFAC1FFQ6SZYSwLUkSVYhg1SgHoKMu0EHVGABlZEMA5HAAEEXAuwwXGdAeb3QYA68iGLxOBagDpynQHm90mAevIpm8RiS4AGli1ZxkUAAQQsCbDBsQTLsEEJUEdBpZtgLQlQR5ZgGTZIAeopyLQTdEQBGlgRwTgcAQQQcC3ABsd1BpjfBwHqyIcsEoNrAerIdQaY3ycB6smnbBKLLQEaWLZkGRcBBBCwJMAGxxIswwYlQB0FlW6CtSRAHVmCZdggBainINNO0BEFaGBFBONwBBBAwLUAGxzXGWB+HwSoIx+ySAyuBagj1xlgfp8EqCefskkstgRoYNmSZVwEEEDAkgAbHEuwDBuUAHUUVLoJ1pIAdWQJlmGDFKCegkw7QUcUoIEVEYzDEUAAAdcCbHBcZ4D5fRCgjnzIIjG4FqCOXGeA+X0SoJ58yiax2BKggWVLlnERQAABSwJscCzBMmxQAtRRUOkmWEsC1JElWIYNUoB6CjLtBB1RgAZWRDAORwABBFwLsMFxnQHm90GAOvIhi8TgWoA6cp0B5vdJgHryKZvEYkuABpYtWcZFAAEELAmwwbEEy7BBCVBHQaWbYC0JUEeWYBk2SAHqKci0E3REARpYEcE4HAEEEHAtwAbHdQaY3wcB6siHLBKDawHqyHUGmN8nAerJp2wSiy0BGli2ZBkXAQQQsCTABscSLMMGJUAdBZVugrUkQB1ZgmXYIAWopyDTTtARBWhgRQTjcAQQQMC1ABsc1xlgfh8EqCMfskgMrgWoI9cZYH6fBKgnn7JJLLYEaGDZkmVcBBBAwJIAGxxLsAwblAB1FFS6CdaSAHVkCZZhgxSgnoJMO0FHFKCBFRGMwxFAAAHXAmxwXGeA+X0QoI58yCIxuBagjlxngPl9EqCefMomsdgSoIFlS5ZxEUAAAUsCbHAswTJsUALUUVDpJlhLAtSRJViGDVKAegoy7QQdUYAGVkQwDkcAAQRcC7DBcZ0B5vdBgDryIYvE4FqAOnKdAeb3SYB68imbxGJLgAaWLVnGRQABBCwJsMGxBMuwQQlQR0Glm2AtCVBHlmAZNkgB6inItBN0RAEaWBHBOBwBBBBwLcAGx3UGmN8HAerIhywSg2sB6sh1BpjfJwHqyadsEostARpYtmQZFwEEELAkwAbHEizDBiVAHQWVboK1JEAdWYJl2CAFqKcg007QEQVoYEUE43AEEEDAtQAbHNcZYH4fBKgjH7JIDK4FqCPXGWB+nwSoJ5+ySSy2BGhg2ZJlXAQQQMCSABscS7AMG5QAdRRUugnWkgB1ZAmWYYMUoJ6CTDtBRxSggRURjMMRQAAB1wJscFxngPl9EKCOfMgiMbgWoI5cZ4D5fRKgnnzKJrHYEqCBZUuWcRFAAAFLAmxwLMEybFAC1FFQ6SZYSwLUkSVYhg1SgHoKMu0EHVGABlZEMA5HAAEEXAuwwXGdAeb3QYA68iGLxOBagDpynQHm90mAevIpm8RiS4AGli1ZxkUAAQQsCbDBsQTLsEEJUEdBpZtgLQlQR5ZgGTZIAeopyLQTdEQBGlgRwTgcAQQQcC3ABsd1BpjfBwHqyIcsEoNrAerIdQaY3ycB6smnbBKLLQEaWLZkGRcBBBCwJMAGxxIswwYlQB0FlW6CtSRAHVmCZdggBainINNO0BEFaGBFBONwBBBAwLUAGxzXGWB+HwSoIx+ySAyuBagj1xlgfp8EqCefskkstgRoYNmSZVwEEEDAkgAbHEuwDBuUAHUUVLoJ1pIAdWQJlmGDFKCegkw7QUcUoIEVEYzDEUAAAdcCbHBcZ4D5fRCgjnzIIjG4FqCOXGeA+X0SoJ58yiax2BKggWVLlnERQAABSwJscCzBMmxQAtRRUOkmWEsC1JElWIYNUoB6CjLtBB1RgAZWRDAORwABBFwLsMFxnQHm90GAOvIhi8TgWoA6cp0B5vdJgHryKZvEYkuABpYtWcZFAAEELAmwwbEEy7BBCVBHQaWbYC0JUEeWYBk2SAHqKci0E3REARpYEcE4HAEEEHAtwAbHdQaY3wcB6siHLBKDawHqyHUGmN8nAerJp2wSiy0BGli2ZBkXAQQQsCTABscSLMMGJUAdBZVugrUkQB1ZgmXYIAWopyDTTtARBWhgRQTjcAQQQMC1ABsc1xlgfh8EqCMfskgMrgWoI9cZYH6fBKgnn7JJLLYEaGDZkmVcBBBAwJIAGxxLsAwblAB1FFS6CdaSAHVkCZZhgxSgnoJMO0FHFKCBFRGMwxFAAAHXAmxwXGeA+X0QoI58yCIxuBagjlxngPl9EqCefMomsdgSoIFlS5ZxEUAAAUsCbHAswTJsUALUUVDpJlhLAtSRJViGDVKAegoy7QQdUYAGVkQwDkcAAQRcC7DBcZ0B5vdBgDryIYvE4FqAOnKdAeb3SYB68imbxGJLgAaWLVnGRQABBCwJsMGxBMuwQQlQR0Glm2AtCVBHlmAZNkgB6inItBN0RAEaWBHBOBwBBBBwLcAGx3UGmN8HAerIhywSg2sB6sh1BpjfJwHqyadsEostARpYtmQZFwEEELAkwAbHEizDBiVAHQWVboK1JEAdWYJl2CAFqKcg007QEQVoYEUE43AEEEDAtQAbHNcZYH4fBKgjH7JIDK4FqCPXGWB+nwSoJ5+ySSy2BGhg2ZJlXAQQQMCSABscS7AMG5QAdRRUugnWkgB1ZAmWYYMUoJ6CTDtBRxSggRURjMMRQAAB1wJscFxngPl9EKCOfMgiMbgWoI5cZ4D5fRKgnnzKJrHYEqCBZUuWcRFAAAFLAmxwLMEybFAC1FFQ6SZYSwLUkSVYhg1SgHoKMu0EHVGABlZEMA5HAAEEXAuwwXGdAeb3QYA68iGLxOBagDpynQHm90mAevIpm8RiS4AGli1ZxkUAAQQsCbDBsQTLsEEJUEdBpZtgLQlQR5ZgGTZIAeopyLQTdEQBGlgRwTgcAQQQcC3ABsd1BpjfBwHqyIcsEoNrAerIdQaY3ycB6smnbBKLLQEaWLZkGRcBBBCwJMAGxxIswwYlQB0FlW6CtSRAHVmCZdggBainINNO0BEFaGBFBONwBBBAwLUAGxzXGWB+HwSoIx+ySAyuBagj1xlgfp8EqCefskkstgRoYNmSZVwEEEDAkgAbHEuwDBuUAHUUVLoJ1pIAdWQJlmGDFKCegkw7QUcUoIEVEYzDEUAAAdcCbHBcZ4D5fRCgjnzIIjG4FqCOXGeA+X0SoJ58yiax2BKggWVLlnERQAABSwJscCzBMmxQAtRRUOkmWEsC1JElWIYNUoB6CjLtBB1RgAZWRDAORwABBFwLsMFxnQHm90GAOvIhi8TgWoA6cp0B5vdJgHryKZvEYkuABpYtWcZFAAEELAmwwbEEy7BBCVBHQaWbYC0JUEeWYBk2SAHqKci0E3REARpYEcE4HAEEEHAtwAbHdQaY3wcB6siHLBKDawHqyHUGmN8nAerJp2wSiy0BGli2ZBkXAQQQsCTABscSLMMGJUAdBZVugrUkQB1ZgmXYIAWopyDTTtARBWhgRQTjcAQQQMC1ABsc1xlgfh8EqCMfskgMrgWoI9cZYH6fBKgnn7JJLLYEaGDZkmVcBBBAwJIAGxxLsAwblAB1FFS6CdaSAHVkCZZhgxSgnoJMO0FHFKCBFRGMwxFAAAHXAmxwXGeA+X0QoI58yCIxuBagjlxngPl9EqCefMomsdgSoIFlS5ZxEUAAAUsCbHAswTJsUALUUVDpJlhLAtSRJViGDVKAegoy7QQdUYAGVkSwUh6+d+9eGT58uOj/M5szZ46cfPLJFU6/f/9+WblypUydOlVWrFghe/bskdatW0u/fv2kQ4cOcswxx0RadtzxtmzZIpMmTZLnnntONm7cKM2bN5du3brJDTfcIPXq1TtiDRrf/PnzZfz48fLOO+/IFVdcIUOHDjXnVatW7Yjj1WDUqFHy1FNPSdOmTSPFxMEI+CTABsenbBKLKwHqyJU88/okQB35lE1icS1APbnOAPNnQYAGVkqzpM2dadOmSVlZmVxwwQWVNrD27dsns2fPlttuu0127NghrVq1kho1asi6devMP+v5+qd27doFRRp3PJ1vwIAB8uqrr0rjxo2lYcOGsmnTJvnggw+kbdu2MnnyZDn77LMPWYM2ovr37y+9evWSyy+/XJ588kn53e9+Z2LVBlz5z6effio33nijnHvuuaapd9RRRxUUDwch4KMAGxwfs0pMpRagjkotznw+ClBHPmaVmFwJUE+u5Jk3SwI0sFKYLW08jR49Wh544AGzunbt2lXawFqzZo307NlT6tevL1OmTJEWLVqYczZv3iyDBg2SVatWySOPPCLdu3cvKNI4423dulVuuukmWb58uYwbN0769u0rRx99tOzcuVMefPBBGTFihAwcOFDGjBkjxx13nFnH559/bq7MqlOnjrlq64QTTpCPPvpIevToIeedd56JvWbNmubYAwcOyIwZM0x88+bNMw0yPgiELMAGJ+TsE3tSAtRRUpKME7IAdRRy9ok9aQHqKWlRxvNRgAZWirKqV1299NJLMmzYMHnttdfklFNOka+//rrSK7B27dolQ4YMkYkTJ8qCBQukc+fOh0Szfv1607hq0qSJzJw5U+rWrVtltHHHW7hwoXTp0sU0zLRJVf6WxS+//NJcHfbiiy/Ks88+Ky1btjRr2LBhg7m98JprrpF77rnH/DuNdfDgwaK3Ipa/ZVL/Wa/S0mN1jopuL0xRGlkKAtYF2OBYJ2aCAASoowCSTIjWBagj68RMEJAA9RRQsgk1tgANrNh0yZ+oVz9deOGF5qqkW265RTp27Gj+r15dVdEzsPT2PL1iSa9U0p83aNDgkEV99dVXcvvtt5tnUi1ZsuTg1VmVrTzOeLt37zbPrdIrr1544QVzK+Dhn8cff9xclTV27FjToNJPLla9/VGvICvfwHrvvfdk7ty5Jm69pVGbYtoAe+KJJ+TUU09NHp4REciYABucjCWM5aZSgDpKZVpYVMYEqKOMJYzlplqAekp1elhcSgRoYKUkEboMverq+eefN82e008/3TwI/dprr620gfXKK6+Y50vpMRMmTJBatWodEc19990n9957r3lOVq5RVFnIccbTWwF79+4tH374oTz99NPmaq/DP7lmld5mqI0uvY0wF5uu/e677z6kgVX+CqzcVWR6VVq+9acolSwFAasCbHCs8jJ4IALUUSCJJkyrAtSRVV4GD0yAegos4YQbS4AGViy20pyUr4G1ePFi6dSpk7mqqfwzo8qvTq/M0tvvRo4cefBWvcpWH2e83FVbOqZeNXXGGWccMXxFcXz22Wem8aW3SVb2DCx99pU2rrQ5Nn369Ly3QJYmK8yCgHsBNjjuc8AKsi9AHWU/h0TgXoA6cp8DVuCPAPXkTy6JxJ4ADSx7tkWPnK+BVUhzqpBjcgst5NjDj8m3Rh27smMqewvh/PnzzYPc9QH0ffr0MQ+h1yvN+CCAwDcCbHD4JiBQvAB1VLwhIyBAHfEdQCA5AeopOUtG8leABlaKc5uvORSn4VRVuHHGy7fGqhpY+tB6bVaNHz9e3nnnHbniiiukrKxMmjVrJrmHdWi/LwAAIABJREFUv+vthnrboT4YXp/lpW81fPnll+XSSy81x7Zp04aHuqf4O8zS7AiwwbHjyqhhCVBHYeWbaO0IUEd2XBk1TAHqKcy8E3U0ARpY0bxKenS+5lCchlOaGlhVrWXRokVy1113mdsS9WosfUB8165dpUOHDuZthPpGw2eeecY82F1vo4zzyf1HIs65nIMAAggggAACCCCAAAIIIICArwItWrRIXWg0sFKXkv9bUL4Glr6ZT2+t04eg68PajzrqqCOiyTW5Ro8effBh6ZWFHGe8jz/++ODD1St6E6LOlYvjtNNOMw2nunXrVqn+6aefyo033ijnnHOOjBgxQnbt2iUDBw6U7du3yy9+8Qvz3Cx9ePwNN9wgxx9/vEyZMsW8uTHqhwZWVDGORwABBBBAAAEEEEAAAQQQCEGABlYIWU4wxnwNrDhvDaxqeXHGi/sWwsrWoQ9unzFjhmlKzZs3Txo3biy5B8VffPHFBxt1epw2t5YuXSr6LK2zzjorQXmGQgABBBBAAAEEEEAAAQQQQACBNAlwBVaasnHYWvI1sHKNnZo1a0pFVz/t2LFDbr31Vlm+fLksWbJE8nVQ44y3e/duGTp0qHlOld7md/nllx8hqm8QHDBggIwdO9a8MbGqz5YtW8xbEzt37myOrVat2sEruLp06XLImxT1qrMFCxYcbHSlOJUsDQEEEEAAAQQQQAABBBBAAAEEihCggVUEnu1T8zWw9Na6IUOGyMSJE00jR5s+5T/r16+X7t27S5MmTWTmzJl5b92LO97ChQtFm0uDBg2SMWPGmAeu5z65h7Hr7Yn63KqWLVtWyrZv3z5zvj6sffbs2XLmmWeaY7kCy/Y3jfERQAABBBBAAAEEEEAAAQQQSLcADawU5ydfA0uXvmbNGvMMqvr168ukSZPMA8/1qqXNmzebhlKuGaTHFPKJM97WrVvlpptuMld66ZVYegWVNrF27txp3hqot/rpz/Vn+lbByj65hpteedWvX7+DbxfUcSp7BtaJJ54okydPltq1axcSHscggAACCCCAAAIIIIAAAggggEAGBWhgpThphTSw9u7dK9OmTZOysjLRWwZbtWolNWrUkHXr1pl/1n+vf8o3eLZt22aaXsuWLZPVq1dL69atDyrEGU9PXrt2rdx8883y1ltvmedWNWzYUDZt2mSuntIHzWuT6eyzz65UW6/+GjZsmDkn96D28gevXLlS+vbtKxdccIF07NhRFi9eLL/97W9l1qxZos/G4oMAAggggAACCCCAAAIIIIAAAv4K0MBKcW4LaWDp8vfv3y/a4Jk6daqsWLFC9uzZY5pSehVThw4dDrmlT4+vqoEVZ7wcoT6/Sq8C06u+dO3NmzeXbt26mbcF1qtXr0rpVatWSZ8+fWTChAnSqVOnI47Vh7a/9NJLom9T1BgvvfRS05hr06bNwSu1UpxKloYAAggggAACCCCAAAIIIIAAAkUI0MAqAo9TEUAAAQQQQAABBBBAAAEEEEAAAQTsC9DAsm/MDAgggAACCCCAAAIIIIAAAggggAACRQjQwCoCj1MRQAABBBBAAAEEEEAAAQQQQAABBOwL0MCyb8wMCCCAAAIIIIAAAggggAACCCCAAAJFCNDAKgKPUxFAAAEEEEAAAQQQQAABBBBAAAEE7AvQwLJvzAwIIIAAAggggAACCCCAAAIIIIAAAkUI0MAqAo9TEUAAAQQQQAABBBBAAAEEEEAAAQTsC9DAsm/MDAgggEClAlu2bJFJkybJc889Jxs3bpQzzjhDOnfuLDfddJM0btw4ktz+/ftl5cqVMnXqVFmxYoXs2bNHWrduLf369ZMOHTrIMcccE2k8DkYgSwJJ1tL06dNlwIABlYbfrl07mTNnjpx88slZImKtCFQqoN/nXr16FSQ0cuRIueeeewo6dteuXbJ06VKZMWOGrFmzRmrUqCGXXnqp3HzzzXLxxRdL9erVCxqHgxDIgsDXX38tgwcPFv1vSCGf1atXm31avs/HH38sPXv2lN/85jeVHjp79mxzDB8EfBeggeV7hokPAQRSK6DNpr59+8oHH3xgmlXavNL/nWtkzZo1y2zwC/ns27dPdPNy2223yY4dO6RVq1bmLwrr1q0z/1xWVmb+1K5du5DhOAaBTAkkWUu7d++WoUOHyrhx42hgZepbwGKLEYjSwNJfugwcODDvdNq8GjNmjNx7771Sp04dadasmfnFyiuvvGL+efTo0aZRfPTRR+cdiwMQyIJAlAaW7vmeffZZUxf5Pm+88YZceeWV8uc//5kGVj4sfu69AA0s71NMgAggkEaBd999V66//nr55JNP5MEHH5QuXbqY30Trhl8bUfobvPPPP18ef/xx+da3vpU3BP3Ntv7mrX79+jJlyhRp0aKFOWfz5s0yaNAgWbVqlTzyyCPSvXv3vGNxAAJZEki6lr744gtz1aL+xnvu3LmmscwHgZAFDhw4IE8++aRpNvXu3ds0pQr5ZchTTz0l/fv3l4suusj8d0lrScd6/fXXzS9b9L9/2jgr5AqUkP2J3R+BnTt3ypAhQ+SJJ56QadOmyXXXXSfVqlXLG+DixYulU6dOMnbsWLM/5INAyAI0sELOPrEjgIATAb1aasSIEXLfffeZppL+Zbn8BkabWLrBWbRokfzHf/yH/OhHP6pynbnjJ06cKAsWLDC3IJb/rF+/3jSumjRpIjNnzpS6des6iZtJEUhaIOla0vW9//77pl6+//3vm79065UifBAIWSD3C5LTTjvN/ILlzDPPzMvx+eefyw033GCuttKrTFq2bHnIOS+88IJ07drV/CJHG2Lc4p6XlAMyLqD/vdIGlO7v7rzzThk1alTB3/v777/fXEWvdXP55ZdnXILlI1CcAA2s4vw4GwEEEIgskHuWgZ6ov31u0KBB5DHKn6C3Hfbo0UNq1qxZ4XhfffWV3H777eY5W0uWLDl4dVZRk3IyAikQSLqWNCT9C3fbtm3NLVLaZD7qqKNSEClLQMCNwNatW80zGZcvXy7z5883tVHIJ3fL02WXXVZhI1jH1f9u6X+fuNKxEFGOybpArhHcqFEjcwXWqaeeWlBIf/3rX03D68UXXzQ12LRp04LO4yAEfBWggeVrZokLAQRSK5D7C7JeefXAAw+YxlMxn9x41157rUyYMEFq1ap1xHD6F3F9DgkP+SxGmnPTJpB0LWl8etuuPpvu0UcfFb3iRGtUX4qgz6n7yU9+Yq4qqVevXtooWA8CiQvo7X768HW9DTDqFSPz5s0zVzIOHz7c/Dn8Nqnyzwoq9EHWiQfIgAiUSODLL780t80+88wzpnmltwMW+sk1e/X48ePHm9t5dS+3fft280IEfUwEL0QoVJPjfBCggeVDFokBAQQyJZDb2Oul5Lfccot5Q1PuzYH6l2R9Htatt95a8JVZuWcj6HMRKmuI5R7QG+XtUZlCZbFBCiRdS/oXdr29V/9ccskl8s4775jGlT5k+q233jJ/YdBn05V/zlyQ8AQdhMAf//hH84we/cu3Ps8qypUf+hKEO+64o8pn9vCLlSC+RgQpIgsXLjR7uz59+pg3T59wwgkFu2zYsEG6detmnpO6d+9e80efJ6eNrTfffNOM8/Of/9zcmnjccccVPC4HIpBVARpYWc0c60YAgcwK5JpJ+vB2fT6V/jZO3xp4/PHHy6ZNm8ybCM8991zT1PrHf/zHvHEW0pwq5Ji8E3EAAikTSLqW9I2d2jzWmmzfvr3oc+X0dg/96DN99Fk92iTWn+mVKfrSBD4I+CigzVxtQumVV/fcc4+5iirK7bSFNKcKOcZHW2IKSyD3PDi9DVevwNKrpqJ89NZBvXVXn8eoNdmrVy/z7Kz9+/eL3paoV3bpL1j0v1v6Mp9CHgofZX6ORSBtAjSw0pYR1oMAAt4L5B7GqYHqpkT/uXnz5mbToW+o0SuztLl13nnnFfSchEKaU4Uc4z08AXonkHQt6W+077rrLtNEfvjhh+V73/veIWa520D0NkNtYOnthHwQ8FGg/NVX+jKRH/zgB5HCLKQ5VcgxkSblYARSKJC7+kpvQZ88eXJBb/AsH4Ze/aiPh7jqqqtMQ1mvCC7/yb0QIcqbq1PIxJIQKFiABlbBVByIAAIIJCOQu7VCLwHXB3Jqo6r8p/yzQSp6q+DhqyikOVXIMclExygIlE4g6VoqZOW5WtLbfx966CE59thjCzmNYxDIlEDue67P14nzlsBCmlOFHJMpNBaLwGECUfdzcQA/++wz6d27t7kaS5tZekU/HwR8FqCB5XN2iQ0BBFIpkPuLgW449Fk6eln44Z/cg6QLeWZV7vLyu+++u9K3puXmHD16tOhxfBDwQSDpWirERP+ScOGFF5o3s2kDjWeOFKLGMVkS0CuB9S2cjz32mCxatEg6duwYefnTp0+XAQMGyLRp00ytVPTJNbD0ChN9CQkfBHwTePvtt+Waa66RunXrWnvbJi9E8O1bQzz5BGhg5RPi5wgggEDCArmGU1V/AV61apV5q0whDSzeQphwghguMwJJ15IGvnv3bvNHn0lX0SdXmzSwMvM1YaERBTZu3GgaSvqXbm0SN2jQIOIIIryFMDIZJ3gokPslS1W/YMwXtj6P7n//93/NL0sOv31Qz/3qq6/k9ttvN7e180bPfJr83AcBGlg+ZJEYEEAgUwL64PauXbvKd77zHfOMq7/7u787Yv25K7AKuWJKn9fTo0cPqVmzZoV/2cg9mFofILpkyRJp0aJFprxYLAKVCSRdS7k3evbr1888c6RWrVpHTJ27skSvHhk2bBgPzOXr6Z1AIW+2zRf0G2+8IVdeeaVcdtllFV5p/PHHH5sHTmuzeO7cueatanwQ8ElAv9tDhw41V+rGvZLxiy++EP3vkT5uYuXKlXLRRRcdQZSrJX1YvDaO9c25fBDwWYAGls/ZJTYEEEilQO72DH2+lW5K9EHu5T+5B0Xr22oKeWPNrl27zOuT9Y1pFT0zS/+S3717d2nSpInMnDnT/FadDwI+CCRdS7nbPdRGb2tq2rTpIUyffPKJ+cuEXoVVSG36YEwMYQno1R6jRo0ybx6cNWuW9OnTJxZA7s1reoXws88+Ky1btjxknNyDp6+//vpYz9iKtShOQqCEArlnU/3pT3+Sp59+2uzBon727dsnI0aMMI+HKCsrM/+7/FVYWq96lZc+kiLuQ+KjronjEXAtQAPLdQaYHwEEghTIbd4bNWokkyZNktatW0v16tXNWwj1DYS6SdG/OOjPTjjhhLxG+lwe/W12/fr1zTn6YHh9q+HmzZtFH8L73HPPyezZs80xfBDwSSDJWtq7d68MHz5c9MrH9u3bm6aw1qh+tHmljWK9alKfD6QPtub5Vz59k4hFBZK8HUmbwP379zdXjeRqSf/C/frrr8ttt90mH374oWkUV3RVCdlAIOsCGzZskG7duplbcLXJdPLJJ8cKKfdLyI8++shczdWrVy855phjZP/+/eaXlvrmXP3oHLqX5IOA7wI0sHzPMPEhgEAqBfQvyvrb7cGDB4ve4te8eXOzudm0aZPoLYG6CdGrpcpfCl7+QZ2HN6N0PH1Yrv6GTsfTt9DUqFFD1q1bZ/5Z/73+qV27dio9WBQCcQXi1NK2bdtMM3fZsmVHPDNk69at5lXl2qjSFyw0a9bMLC1XS/qbbn37YL169eIumfMQSK1Arja0YVvI7Ui5lxq0a9fuiL+k6y9ktBmsf3K1tGfPHtGrsvSf9d/rg94req5PaoFYGAIFCkR94UdltaRNX73i94477jD7Q90X6i23+r/1eXX6v8eOHStXX301t7QXmBsOy7YADaxs54/VI4BAhgV0U6K/WdNGlT5zRDcj559/vvnt2nXXXXfEb+uqamApg/42Tp+RMHXqVFmxYoXoXxS0Eaa3PHXo0MH8xo4PAj4KRK2lqhpY6qO35S5dutQ8FFf/UqEfasnHbw4xHS7w/vvvm1vOtcFUyAPcq2pgVVRL+ouVSy+9VG6++WbzohK98pgPAj4K5F5kUOgD3PPV0pYtW8wV9npFvTautJGlVwrr1Yxnnnmmj4TEhECFAjSw+GIggAACCCCAAAIIIIAAAggggAACCKRagAZWqtPD4hBAAAEEEEAAAQQQQAABBBBAAAEEaGDxHUAAAQQQQAABBBBAAAEEEEAAAQQQSLUADaxUp4fFIYAAAggggAACCCCAAAIIIIAAAgjQwOI7gAACCCCAAAIIIIAAAggggAACCCCQagEaWKlOD4tDAAEEEEAAAQQQQAABBBBAAAEEEKCBxXcAAQQQQAABBBBAAAEEEEAAAQQQQCDVAjSwUp0eFocAAggggAACCCCAAAIIIIAAAgggQAOL7wACCCCAAAIIIIAAAggggAACCCCAQKoFaGClOj0sDgEEEEAAAQQQQAABBBBAAAEEEECABhbfAQQQQAABBBBAAAEEEEAAAQQQQACBVAvQwEp1elgcAggggAACCCCAAAIIIIAAAggggAANLL4DCCCAAAIIIIAAAggggAACCCCAAAKpFqCBler0sDgEEEAAAQQQQAABBBBAAAEEEEAAARpYfAcQQAABBBBAAAEEEEAAAQQQQAABBFItQAMr1elhcQgggAACCCCAAAIIIIAAAggggAACNLD4DiCAAAIIIIAAAggggAACCCCAAAIIpFqABlaq08PiEEAAAQQQQAABBBBAAAEEEEAAAQRoYPEdQAABBBBAAAEEEEAAAQQQQAABBBBItQANrFSnh8UhgAACCCCAAAIIIIAAAggggAACCNDA4juAAAIIIIAAAggggAACCCCAAAIIIJBqARpYqU4Pi0MAAQQQQAABBBBAAAEEEEAAAQQQoIHFdwABBBBAAAEEEEAAAQQQQAABBBBAINUCNLBSnR4WhwACCCCAAAIIIIAAAggggAACCCBAA4vvAAIIIIAAAggggAACCCCAAAIIIIBAqgVoYKU6PSwOAQQQQAABBBBAAAEEEEAAAQQQQIAGFt8BBBBAAAEEEEAAAQQQQAABBBBAAIFUC9DASnV6WBwCCCCAAAIIIIAAAggggAACCCCAAA0svgMIIIAAAggggAACCCCAAAIIIIAAAqkWoIGV6vSwOAQQQAABBBBAAAEEEEAAAQQQQAABGlh8BxBAAAEEEEAAAQQQQAABBBBAAAEEUi1AAyvV6WFxCCCAAAIIIIAAAggggAACCCCAAAI0sPgOIIAAAggggAACCCCAAAIIIIAAAgikWoAGVqrTw+IQQAABBBBAAAEEEEAAAQQQQAABBGhg8R1AAAEEEEAAAQQQQAABBBBAAAEEEEi1AA2sVKeHxSGAAAIIIIAAAggggAACCCCAAAII0MDiO4AAAggggAACCCCAAAIIIIAAAgggkGoBGlipTg+LQwABBBBAAAEEEEAAAQQQQAABBBCggcV3AAEEEEAAAQQQQAABBBBAAAEEEEAg1QI0sFKdHhaHAAIIIIAAAggggAACCCCAAAIIIEADi+8AAggggAACCCCAAAIIIIAAAggggECqBWhgpTo9LA4BBBBAAAEEEEAAAQQQQAABBBBAgAYW3wEEEEAAAQQQQAABBBBAAAEEEEAAgVQL0MBKdXpYHAIIIIAAAgggUJzAfffdJ/fee2+kQdq1aydz5syRk08+WaKcf9NNN8m4cePkuOOOk40bN8q1114r9evXPzhWpEUcdnBuvLfeeqvSYZo3by4tWrSQf/7nf5bzzz9fqlevXumxX375pSxbtkx+9atfydq1a8169dOqVStp37699OrVS8444wypVq1aMcvmXAQQQAABBBBISIAGVkKQDIMAAggggAACCKRRIEoDKrf+rDawyvs/8MADcuedd8rRRx99SFr2798vCxculJ/97GcHm1ba+KpXr57s2bNHtEG2fft2qVOnjgwZMsSMoQ05PggggAACCCDgVoAGllt/ZkcAAQQQQAABBEousG3bNunZs6e5Amn16tXSunXrSteQa4CNHDlS7rnnnoLXausKLF3AvHnzpHHjxkes5fPPP5eZM2eKrlU/8+fPl7Zt2x48bu/evTJt2jQpKyuTGjVqyNChQ6Vv375yyimnHHLMf/7nf5rmlTazKmuEFQzBgQgggAACCCCQiAANrEQYGQQBBBBAAAEEEMiOgK8NLM2ANqmGDx8uo0ePlsGDB5sGVM2aNU1y1qxZYxp3+vnlL38pbdq0qfQWwXfffVeuu+462b17tzz11FPStGnT7CSYlSKAAAIIIOChAA0sD5NKSAgggAACCCCAQFUCPjewNO4XX3zRXHmlz7J64oknpG7durJz504ZOHCgPPbYYzJ+/HgZNGhQlc+3OnDggHmel95C+NBDD5lmGM/Doq4QQAABBBBwJ0ADy509MyOAAAIIIIAAAk4EQmlgde3aVWbMmCEnnniirF+/XvSfTzrpJHnyySfl29/+dl773//+9+Z2RH0Yfbdu3eSoo47Kew4HIIAAAggggIAdARpYdlwZFQEEEEAAAQQQSK2Azw2s8rcQ3n333eYtitp4evzxx83zrvr16ycTJkyQWrVqpTY/LAwBBBBAAAEEjhSggcW3AgEEEEAAAQQQCEwgTgMrH9HhD3kv9UPc9e2Cf/rTn2TKlCny8MMPmyut5syZc/AB9XEfRp8vbn6OAAIIIIAAAqURoIFVGmdmQQABBBBAAAEEUiOQ5QaWvhkw36dOnToyadIk6dWr18Hb/vI1sHINt4rGP/fccyt982G+tfBzBBBAAAEEEEhGgAZWMo6MggACCCCAAAIIZEYgTgPr8Cus8gVr6wqsqhpYrVq1kssuu0x69OghTZo0OeSh6zSw8mWMnyOAAAIIIJBuARpY6c4Pq0MAAQQQQAABBBIXyHIDSzHmzZsnjRs3juSSewbWLbfcYt4qeOyxx+Y9P+f0ySefxJoz7wQcgAACCCCAAAIFC9DAKpiKAxFAAAEEEEAAAT8EQmxgvfHGG3LllVfK6aefXvBbCGlg+fF9JwoEEEAAAT8EaGD5kUeiQAABBBBAAAEEChYIsYG1c+dOGThwoDz22GPyyCOPmLcRVqtWrUozGlgFf6U4EAEEEEAAAesCNLCsEzMBAggggAACCCCQLoEQG1iagZUrV0rfvn1NMn75y19KmzZtKm1i7dq1yzS6hg0bJo0aNeIWwnR9hVkNAggggECAAjSwAkw6ISOAAAIIIIBA2AKhNrAOHDhgbh8cMGCA1KhRQwYPHizXX3+9NGjQ4GAja+/evbJ27VoZM2aMLF26VE466ST513/9V7nxxhvl6KOPDvuLQ/QIIIAAAgg4FKCB5RCfqRFAAAEEEEAAARcCpWxgVfXWwFzss2fPlp49e1ZJkXuroR4U5yHuucG1ifXSSy/J0KFD5bXXXjP/Wh8If8YZZ8iePXtE17t9+3bz7zt06CAjRoyQ5s2b573d0EUemRMBBBBAAIGQBGhghZRtYkUAAQQQQAABBEQk5AZW7gugtwjqlVbPPPOMvPzyy/Lmm2+aH2mzqn379nLVVVeZ/129enW+MwgggAACCCCQAgEaWClIAktAAAEEEEAAAQQQQAABBBBAAAEEEKhcgAYW3w4EEEAAAQQQQAABBBBAAAEEEEAAgVQL0MBKdXpYHAIIIIAAAggggAACCCCAAAIIIIAADSy+AwgggAACCCCAAAIIIIAAAggggAACqRaggZXq9LA4BBBAAAEEEEAAAQQQQAABBBBAAAEaWHwHEEAAAQQQQAABBBBAAAEEEEAAAQRSLUADK9XpYXEIIIAAAggggAACCCCAAAIIIIAAAjSw+A4ggAACCCCAAAIIIIAAAggggAACCKRagAZWqtPD4hBAAAEEEEAAAQQQQAABBBBAAAEEaGDxHUAAAQQQQAABBBBAAAEEEEAAAQQQSLUADaxUp4fFIYAAAggggAACCCCAAAIIIIAAAgjQwOI7gAACCCCAAAIIIIAAAggggAACCCCQagEaWKlOD4tDAAEEEEAAAQQQQAABBBBAAAEEEKCBxXcAAQQQQAABBBBAAAEEEEAAAQQQQCDVAjSwUp0eFocAAggggAACCCCAAAIIIIAAAgggQAOL7wACCCCAAAIIIIAAAggggAACCCCAQKoFaGClOj0sDgEEEEAAAQQQQAABBBBAAAEEEECABhbfAQQQQAABBBBAAAEEEEAAAQQQQACBVAvQwEp1elgcAggggAACCCCAAAIIIIAAAggggAANLL4DCCCAAAIIIIAAAggggAACCCCAAAKpFqCBler0sDgEEEAAAQQQQAABBBBAAAEEEEAAARpYfAcQQAABBBBAAAEEEEAAAQQQQAABBFItQAMr1elhcQgggAACCCCAAAIIIIAAAggggAACNLD4DiCAAAIIIIAAAggggAACCCCAAAIIpFqABlaq08PiEEAAAQQQQAABBBBAAAEEEEAAAQRoYPEdQAABBBBAAAEEEEAAAQQQQAABBBBItQANrFSnh8UhgAACCCCAAAIIIIAAAggggAACCNDA4juAAAIIIIAAAggggAACCCCAAAIIIJBqARpYqU4Pi0MAAQQQQAABBBBAAAEEEEAAAQQQoIHFdwABBBBAAAEEEEAAAQQQQAABBBBAINUCNLBSnR4WhwACCCCAAAIIIIAAAggggAACCCBAA4vvAAIIIIAAAggggAACCCCAAAIIIIBAqgVoYKU6PSwOAQQQQAABBBBAAAEEEEAAAQQQQIAGFt8BBBBAAAEEEEAAAQQQQAABBBBAAIFUC9DASnV6WBwCCCCAAAIIIIAAAggggAACCCCAAA0svgMIIIAAAggggAACCCCAAAIIIIAAAqkWoIGV6vSwOAQQQAABBBBAAAEEEEAAAQQQQAABGlh8BxBAAAEEEEAAAQQQQAABBBBAAAEEUi1AAyvV6WFxCCCAAAIIIIAAAggggAACCCCAAAI0sPgOIIAAAggggAACCCCAAAIIIIAoOfXKAAAAQUlEQVQAAgikWoAGVqrTw+IQQAABBBBAAAEEEEAAAQQQQAABBGhg8R1AAAEEEEAAAQQQQAABBBBAAAEEEEi1wP8HIxzRHY+p2m4AAAAASUVORK5CYII=" />

The red dots represent this year.

Total Yards

Year Total Plays Total Yards Total Yards G YPP
2020 518 2701 385.86 5.21
2019 992 6791 485.07 6.85
2018 1028 7324 523.14 7.12
2017 941 6917 532.08 7.35
2016 964 6028 463.69 6.25
2015 1070 6206 477.38 5.80
2014 975 5750 442.31 5.90
2013 1102 6402 457.29 5.81
2012 1012 6039 464.54 5.97
Total 8084 51457 480.91 6.37
Average 1010.5 6432 480.69 6.38

Passing Yards

Year Games Passing Att Pass Yards Yards Att Pass Yards G
2020 7 243 1373 5.65 196.14
2019 14 441 4177 9.47 298.36
2018 14 413 3405 8.24 243.21
2017 13 488 4355 8.92 335.00
2016 13 477 3957 8.30 304.38
2015 13 533 3881 7.28 298.54
2014 13 467 3556 7.61 273.54
2013 14 494 3723 7.54 265.93
2012 13 413 3370 8.16 259.23
Total 107 3726 30424 8.17 284.34

Rushing Yards

Year Rushing Att Rush Yards Yards Rush Run Yards G
2020 275 1328 4.83 189.71
2019 551 2614 4.74 186.71
2018 615 3919 6.37 279.93
2017 453 2562 5.66 197.08
2016 487 2071 4.25 159.31
2015 537 2325 4.33 178.85
2014 508 2194 4.32 168.77
2013 608 2679 4.41 191.36
2012 599 2669 4.46 205.31
Total 4358 21033 4.83 196.57

Rushing Yards Losing by 8+ Points

Year

Rush Att

When Down by 8+ Points

Rush Yards

When Down by 8+ Points

YPC

When Down by 8+ Points

BIG R 10+

When Down by 8+ Points

BIG R

When Down by 8+ Points

Total BIG R

for the Season

Total Rushing Yards

for the Season

% of Rush Yards

When Down by 8+ Points

2020 121 497 4.11 23 46.00% 50 1328 37.42%
2019 36 146 4.06 2 2.63% 76 2614 5.59%
2018 48 161 3.35 6 5.26% 114 3919 4.11%
2017 56 280 5.00 8 9.88% 81 2562 10.93%
2016 115 462 4.02 19 26.03% 73 2071 22.31%
2015 79 211 2.67 6 8.82% 68 2325 9.08%
2014 42 90 2.14 4 5.19% 77 2194 4.10%
2013 126 497 3.94 17 19.32% 88 2679 18.55%
2012 117 427 3.65 13 14.13% 92 2669 16.00%

BIG Plays

Year Games Passing Att Pass 20+ BIGP % Rushing Att Run10+ BIGR % Total Plays BIG Plays BIG%
2020 7 243 18 7.41% 275 50 18.18% 518 68 13.13%
2019 14 441 73 16.55% 551 76 13.79% 992 149 15.02%
2018 14 413 48 11.62% 615 114 18.54% 1028 162 15.76%
2017 13 488 70 14.34% 453 81 17.88% 941 151 16.05%
2016 13 477 57 11.95% 487 73 14.99% 964 130 13.49%
2015 13 533 57 10.69% 537 68 12.66% 1070 125 11.68%
2014 13 467 52 11.13% 508 77 15.16% 975 129 13.23%
2013 14 494 62 12.55% 608 88 14.47% 1102 150 13.61%
2012 13 413 55 13.32% 599 92 15.36% 1012 147 14.53%
Total 107 3726 474 12.72% 4358 669 15.35% 8084 1143 14.14%

3rd Down and 4th Down Conversion

Year Games 3rd Down Att 3rd Down Con 3rd Down Con % 4th Down Att 4th Down Con 4th Down Con %
2020 7 109 42 38.53% 19 9 47.37%
2019 14 193 89 46.11% 24 14 58.33%
2018 14 191 90 47.12% 17 11 64.71%
2017 13 169 74 43.79% 20 11 55.00%
2016 13 195 79 40.51% 22 13 59.09%
2015 13 229 94 41.05% 18 10 55.56%
2014 13 199 76 38.19% 23 10 43.48%
2013 14 215 84 39.07% 25 15 60.00%
2012 13 194 80 41.24% 18 7 38.89%
Total 107 1585 666 42.02% 167 91 54.49%

3rd And Long (7+) Passing Offense

3rd 7+ Passing
Year Games Pass Att Pass Comp Comp % Yards YPA TD TD % INT INT %
2020 7 35 15 42.86% 148 4.23 0 0.00% 4 11.43%
2019 14 77 44 57.14% 884 11.48 5 6.49% 4 5.19%
2018 14 69 44 63.77% 691 10.01 5 7.25% 1 1.45%
2017 13 63 29 46.03% 456 7.24 2 3.17% 1 1.59%
2016 13 72 44 61.11% 615 8.54 6 8.33% 3 4.17%
2015 13 83 44 53.01% 599 7.22 4 4.82% 1 1.20%
2014 13 78 39 50.00% 426 5.46 2 2.56% 2 2.56%
2013 14 57 32 56.14% 313 5.49 1 1.75% 2 3.51%
2012 13 56 33 58.93% 435 7.77 4 7.14% 3 5.36%